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ABSTRACT
Beyond describing the structure of networks, we also want to uncover their underlying principles of organisation. To capture the true driving forces in the 
organisation and development, we still need to understand the statistical interdependencies between the graph measures. In our work, we have derived 
analytical formulae to calculate the expected reciprocity in directed networks, conditional on the degree distribution and/or the degree-degree correla-
tions [1]. We find that, in many empirical networks, the observed and the expected reciprocities are equal, opening the question whether the observed 
reciprocity arises as a by-product of the degree correlations, or on the contrary, the observed degree correlations arise as a functional necessity for re-
ciprocal links. The application of constrains (e.g. degree-correlations) to random networks can drastically reduce their ``ammount of randomness'' [2]. 
Within the empirical networks we analysed, the degree correlations alone determine between 30% and 95% of  the connectivity.

MOTIVATION
The graph measures are statistical measures applied to 
the same mathematical object (the network) hence, their 
outcome is not independent of each other. Understanding 
the statistical dependence between the graph measures is 
still a relevant open question, only understanding of this in-
terdependencies will we be able to infer with certainty the 
causal relations governing the interplay between structure, 
dynamics and function.

Figure–1: (IN-)DEPENDENT MEASURES:
Under the current theoretical understanding, it is very diffi-
cult to identify which are the “true driving-forces” in the 
evolution of a real network, i.e. which network characteris-
tics are optimised by function and which not.

LOCAL GRAPH MEASURES
In directed networks, the degree of nodes is splitted into 
the input ki and the output ko degrees, hence, the degree 
distribution becomes a 2-dimensional statistic:

• N(k) = number of nodes with degree k = (ki, ko).

The 1-node degree correlation (1n) is the correlation be-
tween the input and the output degrees of the same node.

For a link s → t, connecting two nodes with degrees k = 
(ki, ko) and q = (qi, qo), the 2-node degree correlation 
(2n) is a 4-dimensional statistic. We charaterise it as:

• L(k→q) = L(ki, ko, qi, qo) = number of links projeting 
from nodes with degrees k to nodes with degree q.

Figure–2: 2n2d DEGREE CORRELATIONS:
In directed networks, there are 4 classes of 2-node, 2-degree 
(2n2d) correlations. Altogether, there are up to 10 combina-
tions of 1-node and 2-node degree correlations.

The reciprocity of a directed network is defined as the 
probability that for a randomly chosen link s → t, the opo-
site s ← t link also happens.

•  r = L↔/L, where L↔ is the number of reciprocal links 
and L is the number of links in the network.

EXPECTED RECIPROCITY
Under the class of degree correlations here assumed, a 
network is considered to be maximally random when any 
of the nodes with degree k are equally connected to any of 
the nodes with degree q. If a network contains L(k→q) 
links of the type k→q, then the probability is, in the ther-
modynamical limit:
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The expected number of reciprocal links of the type k↔q 
is 〈L(k↔q)〉 = L(k→q) p(k←q). Thus we compute the 
expected reciprocity under all the 1-node and 2-node 
degree correlations:

Considering only random networks with prescribed degree 
distribution (1-node correlations):

And in random networks:

EMPIRICAL NETWORKS
We find that in many networks, the 1-node and the 2-
node degree correlations “explain” the observed reci-
procity.
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PACS numbers:

Network rreal r1n2n r1n rrand

World Trade Webs

Year 1948 0.823 0.812 0.707 0.382

Year 2000 0.980 0.958 0.813 0.560

Neural Networks

C. Elegans 0.433 0.329 0.060 0.033

Cortical Networks

Cat 0.734 0.659 0.390 0.300

Macaque 0.750 0.645 0.230 0.155

Food Webs

Little Rock lake 0.0339 0.0323 0.0501 0.0743

Grassland 0.0 0.0 0.0079 0.0179

St. Marks sea. 0.0 0.0075 0.0703 0.0948

St. Martin Isl. 0.0 0.0016 0.06765 0.1131

Silwood Park 0.0 0.0 0.0160 0.0155

Ythan estuary 0.0034 0.0050 0.0531 0.0330

Wikipedia Website

Spanish 0.3517 0.1466 0.0056 0.0004

Portuguese 0.3563 0.1207 0.0084 0.0004

Chinese 0.3668 0.1556 0.0096 0.0010

TABLE I: Measured reciprocity r of several real networks, and theoretically expected reciprocities due to different correlation
structures. (i) 1-node and all 2-node correlations r1n2n. (ii) 2-node out-out r2n:o/o (no 1-node). (iii) 1-node correlations r1n

(no 2-node). And (iv) the density of connections ā.
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Table–1: RECIPROCITY OF REAL NETS:
After measuring the reciprocity for several empirical net-
works of different characteristics, the reciprocity has been 
compared to the expected reciprocity under different con-
straints.

NULL MODELS
The study of significance of graph measures and their sta-
tistical interdependence lies in the formulation of proper 
null-hypothesis. We are interested in uncovering what are 
the expected values that graph measures obtain in maxi-
mally random graphs which conserve desired statistics.

The random graph (Erdös-Rényi) is the most basic null-
model, it consists of the set of maximally random graphs of 
size N and number of links L. Further popular constraints 
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are to conserve also the degree sequence N(k) (degree 
distribution) or, as in our work, the degree-degree correla-
tions L(k→q).  

Figure-4: SPACE OF RANDOM GRAPHS:
By imposing statistical constraints to the generation of ran-
dom networks drastically reduces the degrees of freedom of 
a null-model and hence, the space of accessible random 
graphs.

In the case of random graphs with desired degree correla-
tions (1n2n random digraphs) we find that when the condi-
tion

 L(k→q) = N(k) N(q)                     (1)

holds, those links become deterministic, i.e. they cannot 
not be randomised.
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Network N L Ldet Ldet/L

Cortical Networks

Cat 53 826 654 0.792

Macaque 70 747 569 0.762

Food Webs

St. Martin Isl. 45 224 139 0.621

St. Marks sea. 49 223 146 0.655

Grassland 88 137 9 0.0657

Ythan estuary 135 597 267 0.447

Silwood Park 154 365 33 0.315

Little Rock lake 183 2476 2149 0.868

World Trade Webs

Year 1948 82 2539 2433 0.958

Year 2000 190 20105 19138 0.952

Wikipedia Website

Chinese 18089 332434 96611 0.291

Portuguese 30374 373215 78152 0.209

Spanish 39562 655615 166073 0.253

TABLE II: The real networks analyzed in this paper are very different in sizes N , link densities ρ and degree correlation
structures. The number of embedded deterministic links Ldet is also shown for comparison.

Table–II: DETERMINISM IN RANDOM NETS:
Number of deterministic links (Ldet) found in real networks 
after condition (1) is satisfied. 

We find that in many real networks the 1-node and 
the 2-node correlations deternine the structure of 
the network almost completely, while in other cases 
(e.g. the Wikipedias) higher order structures must be 
present.
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